Oltre il testo:

Sviluppare app Al multimodali
con regolo.ai

m@ Eugenio Petulla

-

Nellambito dell’Intelligenza Artificiale, il termine
“multimodale” siriferisce alla capacita di un modello di
interpretare ed elaborare informazioni provenienti da
diversi tipi di dati, come testo, immagini, audio e video.

1 1]

Vision-Language

puo (5T

faster-whisper-large-v3 gemma-3-27b-it Qwen-Image

qwensd-vl-32b

Interagire con modelli STT

O

Chunking (Best Practice)

Per prevenire allucinazioni o loop di trascrizione, €
raccomandato I'invio di segmenti audio inferiori ai

2-3 minuti.

Timeout Management

Il limite massimo di elaborazione suggerisce di non

superare mai i 5 minuti per singolo file.

Librerie Standard

Integrabile istantaneamente con il client ufficiale
di regolo o quello di openai.

import openai
from pathlib import Path

OpenAI client configuration
openai.api_key = "YOUR_REGOLO_KEY"
openai.base_url "https://api.regolo.ai/v1/"

Audio file to transcribe
AUDIO_FILE = "/path/to/your/audio"
OUTPUT_FILE = "/path/to/output/transcription.txt”

Transcribe the file
with open(AUDIO_FILE, "rb") as audio_file:
transcript = openai.audio.transcriptions.create(
model="faster-whisper-large-v3",
file=audio_file,
language="en",
response_format="text"

Save the transcription
output_path = Path(OUTPUT_FILE)
output_path.parent.mkdir(parents=True, exist_ok=True)

with open(output_path, "w", encoding="utf-8") as f:
f.write(transcript)

print(f"Transcription saved to: {OUTPUT_FILE}")

Pro-tip per 'integrazione: > L'uso del
formato OGG garantisce il miglior rapporto
qgualita/peso, riducendo i tempi di upload e la
latenza complessiva della pipeline.

import requests

Interagire con mOdeIIi url = "https://api.regolo.ai/v1/chat/completions™

. . payload = {
Vision-Lanquage
g g "messages": |
{
"role": "user",
"content": |
(] {
oLNN Struttura Messaggio T —
"text": "Describe this image in detail.”
L'input € una lista di oggetti nel campo content, }
esattamente come le chat completions, alternando { .
"type": "image_url",
-tL_lee: ”'teX't” e tupe: ”image_url”. "image_url" ' {
"url": "https://regolo.ai/images/good-cat.jpg",
Modelli Verticali "format": "image/jpeg"
Y
Alcuni di questi modelli sono addestrati a] }
riconoscere pattern diversi e possono essere utili in }
ambiti diversi (OCR, Medicina, etc.) \]
headers = {
03 Latenza (Trade-off) "Content-Type": "application/json",

"Authorization": "Bearer YOUR_REGOLO_KEY"

L’uso di URL Base64 riduce i tempi di risoluzione

DNS esterna ma aumenta la dimensione del response = requests.post(url, json=payload, headers=headers)
print(response.json())

payload.
L

-

Pro-tip: > E fondamentale poter impostare
nelle chiamate una finestra ampia (almeno
4096 token) per garantire spazio sufficiente
ad analisi dettagliate.

Interagire con modelli di
Image Generation

Ll Latenza

La velocita di generazione e influenzata
direttamente dalla dimensione selezionata e dal

numero di varianti richieste.

Risoluzione

E fondamentale capire su quali risoluzioni & stato
addestrato il modello per evitare artefatti e

garantirne la qualita dell’output.

okJB Data Handling

L’API restituisce i dati nel campo b64_json. E
necessario decodificare la stringa Base64 per
ricostruire il file binario (PNG/JPG).

import requests
import json

from PIL import Image
import io

import baseb64

url "https://api.regolo.ai/v1/images/generations'’
headers = {
"Authorization': 'Bearer YOUR_REGOLO_KEY',
‘Content-Type': 'application/json’

}
data = {
"prompt”: "A white cat resting in Rome",
"n": 2,
"model” : "Qwen-Image",
"size": "1024x1024"
}

response = requests.post(url, headers=headers, data=json.dumps(data))

if response.status_code == 200:
response_data = response.json()

for index, item in enumerate(response_datal 'data']):
b64_image = item|'b64_json’]
image_data = base64.b64decode(b64_image)

image_stream = io.BytesIO(image_data)
image = Image.open(image_stream)

Save the Image
output_path = f'generated_image_{index + 1}.png"
image.save(output_path)
print(f"Image saved to: {output_path}")
else:

print("Failed to generate images:", response.status_code, response.text)

Pro-tip: > Per output ad altissima risoluzione,
la best practice suggerisce di generare a
1024 %1024 e utilizzare un upscaler dedicato
post-generazione (Real-ESRGAN).

Esistono tre modi "banali® ma efficaci per gestire un
input multimodale.

Sequential Chain Parallel Processing

LangChain

CrewAl

-

Sequential Chain (Il *Sandwich®): E il flusso
piu semplice. Audio - Testo - Sintesi.
L'informazione fluisce in una sola direzione.

Smart Routing: Un LLM “reqgista” riceve
'input e decide quale strumento attivare. Se
'utente invia un’immagine, attiva la Vision; se
invia un audio, attiva lo Speech-to-Text.

Parallel Processing: |l piu veloce. Mentre |l
modello trascrive l'audio, un altro modello
analizza contemporaneamente i metadati o |l
sentiment, unendo i risultati alla fine.

&m regolo.ai/labs

linkedin.com/company/regolo-ai

